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Chapter I. Introductory Chapter

A..Aims and Guiding Principles of this Handbook.

1. This handbook is based on approaches which have been useful to the

author. These approaches do not always conform to a "standard treatmentO of

the subject. For example, the literature contains many analyses based on

the impedance circle diagram and the admittance circle diagram, which

comprise offset 6circlesO in the complex plane. Here Y or Z is given as

A+ jB.

The author has for the most part used an alternative approach, by

extracting the two components of [A + jB] from the complex plane and

plotting them separately in the real plane, versus frequency. Eventually

the interrelationship is shown between the plots in the real plane and the

plots in the complex plane.

The handbook thus presents the reader with a choice of ways of

IA) analyzing transducers.

"- A situation constantly imagined was: If you are handed, e.g., an old

impedance-vs-frequency curve, unearthed in a file, what is the maximum

amount of information you can extract from it? One aim of this handbook is

to help the reader maximize the obtainable information. (A well-documented

circle diagram contains everything you need; but too often the frequencies

desired by the next inquirer are not called out. Hence the diagram loses

its value.) 4-. ..

4. This first volume is limited to an analysis of the untuned piezoelectric

transducer, with no dielectric losses, using either the Mason- or the

Van Dyke-circuit approximations. The analysis includes a discussion of the

various forms of the performance data as commonly presented by a computer

simulation or by a measurement station. This means, e.g., when discussing



the input impedance: the graphical appearance of Z-mag vs. frequency,

Z-angle vs. frequency; X and B and R and G vs. frequency; X vs. R. B vs. G;

etc.

Profuse illustrations are given of many equivalent sub-circuits and

their responses. Inverse relationships and not-quite-inverse relationships

are discussed.

5. All curves have been normalized around the frequency 1.0, and in most

cases log frequency rather than linear frequency has been used. This not

only confers left-right symmetry on the plot, but allows the reader to make

direct use of these curves for his owndesign projects. For, the curves are

now universal; and in addition the frequency markings are quite accurate.

Occasionally a curve is plotted both ways, log frequency and linear

frequency, to help the reader visualize the quite different appearances of

the plotted function.

6. For the most part, the illustrations are on the left page. They contain

a minimum of explanatory statements, since these are given fully on the

right page. The illustrations are repeated as the left page is turned, with

the added feature that they move up the page, as in a Chinese scroll, to

keep them synchronized with the text.

This arrangement was chosen so that the handbook can provide the

asked-for information in an easily retrievable form.

7. Whenever deemed helpful, a geometrical interpretation of the numerator

or denominator of an equation is separately plotted; or even a portion of

the numerator or denominator may be plotted.
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8. Two repeating sets of illustrations are used throughout.

a) An equivalent circuit has been chosen using simple numerical valuesl

viz: Co = 1.5 nF, Cm = 0.5 nF, Lm = 0.5 henry, and Rm = 3200 ohms.

These give a resonance frequency fr = 10,000 Hz and an antiresonance

frequency fa = 11,500 Hz. When normalized these become 1.0 and 1.15

'j frequency units. The coupling coefficient k is thus seen to be 50%; and the

2m ~R 10 at either fr or fa" The choice of these above values allows

the reader to verify a point by mental calculation, without resorting to a

slide rule or calculator.

b) A computer-simulation of a realistic sonar transducer has been

j chosen, having three different radiation loadings which are purely

resistive. These frequencies have all been shifted so that fr = 1.0.

Since the k is 50%, fa again = 1.15. All relative magnitudes, on a dB

scale, have been preserved in the frequency translation; but the absolute

magnitudes are now not correct at the normalized frequency. However, since

both susceptance and reactance components (for example) were operated on by

the same transformation, the originally computed numbers will retain much

useful correlation between e.g. susceptance and reactance.

B. A Figure-of-Merit for Transducers

A figure-of-merit is usally an arbitrary formula which has proven

useful in a given discipline. People who design piezoelectric filters choose

k2Qmfor their figure-of-merit. They would like a coupling coefficient

k > 60% and a mechanical Q (i.e. Qm) > 100; and the higher each component

the better, since a high Qm means low friction losses.
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But designers of transducers for radiating or receiving sound energy

have a different criterion. They still would like a high k; but not too
I j I high a Q M. In fact if the Qm became lowered due to an increased

radiation loss Rload (while maintaining the friction losses at a steady

value), this could be a highly desirable situation. It is known as matching

the transducer impedance to the load impedance. Hence a Q in the range
m

of 2 to 5 is usually very desirable.

We will leave out Qm entirely from our figure-of-merit formula,

preferring to choose the optimum value of Qm on a case-by-case considera-

tion. Then our figure-of-merit reduces merely to k2 or, more simply, to k

the coupling coefficient. (Note that we always use it in the form k= or k

never as k.)
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B. (cont.)

Figure-of-Merit for Transducers (Coupling Coefficient)

The coupling coefficient k can be obtained from measurements on the

untuned transducer, which give us k . Basically k' starts with the total

reactive energy stored on the two sides of the transducer, mechanical and

electrical. Then 1/k2 is the ratio of this total reactive energy to the

partial reactive energy transferred and stored on the other side; or k2 is

the ratio of the transferred stored energy to the total stored energy. On

the electrical side, the reactive energy is stored in the capacitor (for a

piezoelectric transducer). On the mechanical side, all the reactive energy

is stored in the spring if we measure at dc (or extrapolate down to dc); the

value of the mass is thus irrelevant.

Figure I.la shows the equivalent circuit we will work with. This is

the Mason-circuit or modified Van Dyke-circuit. It is valid in the

neighborhood of the fundamental resonance and at dc; but invalid elsewhere.

The mechanical branch uses the analog of force with voltage, and velocity

with current. It then can be shown that springs in parallel must be

represented by "mechanical condensers" in series. Also, a force generator

which produces the same displacement "X" across two springs in parallel, is

here represented by the force generator F which produces constant

displacement "X" through two "mechanical condensers" in series. "Mechanical

inductances" Lm and "mechanical resistances" * combine in series precisely

as do true masses M and true viscosities R. The perfect electromechanical

turns-ratio (or perfect transformer) 1:O has the dimensions (volt: Newton)

in the MKS system.

Figure I.lb shows the low-frequency approximate equivalent circuit,

which is exact at dc.
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Then at dc, k 2  Energy transferred to mechanical condenser
Energy in mechanical condenser + Energy in electricalcapacitor

Two approaches are now possible, in calculating these energies.

1. It is sometimes convenient to send the mechanical condenser Cm

through the perfect transformer 1: , and work with Figure 1.2. The
,

mechanical condenser Cm has now become the "motional capacitor" Cm.

The circuit of Fig 1.2 suggests that we should apply a voltage E to the

electric terminals and measure the energy transferred to the motional

element Cm (which is in parallel).

2

Then k 2  1/2 Cm EG Cm (1.1)
1/ 2 Cm EG + 1/2 CO EG  C (1.i)

From this it follows that:

Fig 2c Fig 2e (see Chapter 2)

C Cl d - Xfree Xo(free)
1-k = 3:4 0 , (1.2)

3 Cm + Co free clamped Xclamped

1 C + Co lAnd y 4:3 = C free Xclamped c amPed .3)
o clamped free X (free)

C C)
V Cm - mot Xclamped (1.4)And tvk- 1:3 (1c.med4mt X)fre

O clamped Xmot Xo(free)

Ad1-k 2  C 0 xc~e - mot - 0 (free)
An kz- =3:1 mo 0(r (1.5)

Am Cmot Xclamped XmotXmot

2. It is sometimes more convenient to send the capacitor C through the

perfect transformer 1:€, and work with Figure 1.3a. The capacitor C has

now become the "mechanical condenser" C0 . The circuit of Fig 1.3a

suggests that we should apply a force F in series with the "mechanical

1- 6
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condenser" Cm, and measure the energy transferred to the "electrical"

element Co (which is in series). Since the force generator F must have

zero internal impedance, the mechanical boundary is still "free", as is

required in these measurements.

1i 1
-xw * **,C 0 C C C CThen Vc = ____-_ _ _ _ _1 X2  -+ +~ clxW + W* m +C0 Cm 0 C o

y7 -*+f- C0  Cmo C 0(1.6)

Equally true, we could have sent the whole mechanical branch through

the transformer l:€, so that we could work with the circuit of Figure 1.3b.

Note that displacement "XP then becomes charge "q".

2 0o CM
Then k2 = = 0 = m (1.7)

00

Thus the value of k2 is invariant, whether we inject electrical energy

and measure the transferred mechanical energy; or whether we inject

mechanical energy and measure the transferred electrical energy.

In closing, it should be mentioned that this dc value of k , called the

static coupling coefficient, is not always duplicated at resonance. For

many designs the resonance coupling coefficient has a lower value than the

static value, sometimes dropping to as low as 75% static k. The static

value is still worth finding, however, as an upper-limit to the

possibilities of a newly-built model.
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Chapter 1. Some Information Obtainable from the Input Imittance Magnitude
(Untuned).
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Chapter 1. Some Information Obtainable from the Input Immittance Magnitude
(Untuned).

1. Input Admittance and Input Impedance Magnitude shown as 20 log
lYlor 20 log JZ vs. log frequency.

2. Asymptotes Bo and (B0 + Bm ) for "clamped" and "free"
portions of the frequency band.

3. Two aspects of coupling coefficient k.

Preliminary Note: In this Handbook the operator 11 (parallel), when used

Z1 " Z2
with impedance elements, will mean for example: Zj11Z 2 = Z + Z2 "With

admittance elements it means: Y111Y 2 = Yj + Y2 . Likewise the operator

(series), when used with admittance elements, will mean for example:

Y1 - Y2 1
Y2= + Y2 " With impedance elements it means: Z = ZI + Z2.

In this chapter we will try to illustrate the usefulness of the loga-

rithmic scale in plotting magnitude of immittance. Not only does the log

scale make the max. and min. values of Y or Z more or less symmetrical about

their mean value (which is not the case with a linear scale); but in

addition the two asymptotic baselines are now displayed as parallel straight

lines (rather than converging or diverging hyperbolas). This facilitates

finding the separation between the "free" and "clamped" asymptotes. This

mechanical terminology is analogous to electric circuit terminology as

follows. As will be shown in Fig. 1c, mechanical "free" (where the motional

resistance Rm = 0) corresponds to a 4-terminal electric circuit whose

output terminals are short-circuit. And mechanical "clamped" (where the

motional resistance RM = ) corresponds to a 4-terminal electric circuit

whose output terminals are open-circuit. Note that the "free" immittance

occurs only below the resonance, fr; and the "clamped" immittance occurs

only above the anti-resonance, f

a-I
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The separation between the "free" baseline and the "clamped" baseline

determines the static coupling coefficient. This static k is usually higher

than the dynamic k which prevails at resonance.

1. Figures la and lb show experimental measurements of the magnitude of the

input admittance of two different barium titanate transducers, air-loaded,

*plotted on semilog paper. We plot 20 log ladmittancel as the ordinate.

Looking briefly at "the Basic Circuit" shown in Figure Ic, which is a

simplified equivalent circuit (the Van Dyke-circuit) for the transducers

measured in Figures la and 1b: we see that since Zin = JXolZm and

r I then =yI I_1 + 1 at low frequencies; and
in 17, i n ~nfree jl X m
in 0

rc

Y~n clamped at high frequencies. Or identically,

Iy I i jB + j Bmo at low frequencies; and ly I jBoI at high frequencies.

Zm and Xmc and Bm are "mechanical" components which have been

transformed to the electric side. They are then called motional components.

2. In Figures Id and le the two baseline susceptances or reactances are

seen to plot as two parallel straight-line asymptotes: B or Xlclamped;

and B or Xlfree*

3. The coupling coefficient k can be determined from each graph in two

independent ways.

(a) Static k.

When the Qm is low, the asymptote B0 can be guessed at and drawn

2 BO(Fig la). Then it can be shown that 1-k Bo + Bm or 20 log (142) = B

of[B Bminus (B + m8 ' Thus the larger the spacing Bm between the

asymptotes, the higher the k static.

1-2
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In practice, for an assembled PZT ceramic transducer in the 33 mode using a

stack of rings, static k33 is usually not greater than about 0.55. A PZT

transducer using the 31 mode in a stack of rings, will usually have static k31

not greater than about 0.30.

The meaning of k 31 and k33 is the following. A long tube of

piezoelectric ceramic, electroded on its outer and inner faces and polarized (or

"poled") radially, is said to be working in the 3-1 mode when it vibrates

r* either longitudinally or radially. If this tube is now sliced up into rings and

reassembled as a stack of rings, it is still working in the 3-1 mode. We say we

have a stack comprised of 3-1 rings.

But if, after slicing the tube into rings, we take these rings and depolarize

them and remove the electroding; and then electrode each ring on its top and bottom

flat surface, and then pole each ring longitudinally (i.e. parallel to the axis):

We say that each ring is now working in the 3-3 mode. And if we reassemble these

3-3 rings (or any 3-3 rings) into a stack, we say we have a 3-3 stack.

If barium titanate is the ceramic, then using a stack of rings, static k,3

is usually not greater than 0.35; and static k31 is usually not greater than

0.14.

If a single long tube of barium titanate is used, however, static k

might = 0.19 (since now there are no multiple cement joints, which act to decouple

the mechanical domain from the electrical domain, thereby reducing k).

Figure la shows the input admittance of an underwater transducer measured in

air, on the bench. The "motor" was a stack of PZT rings operating in the 3-3 mode.

But the rings were known to be partially depolarized. The coupling coefficient was

therefore not calculable in advance (i.e. via theory).

In the figure, AdB = -1.5 dB. So (1-k2) = 0.84. And kstatic = 0.40. If

we had read AdB - -1.4 dB, then kstatic - 0.385. The dynamic value of k

I -3
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runs lower, say 75% of these values, when the head and tail are relatively

light weight. If they are heavy, the dynamic value can be > 90% of

kstatic*

(b) Dynamic k.

Since w are primarily concerned with the behavior of an assembled

transducer around resonance, we can try going directly to the frequency-

variation method, using fa' fr' and Af = (fa-fr). These terms are

usually derived at the electric terminals. However, if we look into the

mechanical instead of electrical terminals, fa (the "anti-resonance") is

merely the mechanical resonance when the electric terminals are open-circuit;

fris the mechanical resonance when the electric terminals arer

short-circuit; and Af is the difference between the two. These three values

can be determined fairly accurately when the Qm is high (>10); but Af, the

most important quantity, becomes blurry when the Qm, or mechanical Q, is

low. Qm is defined here as fr divided by the -3dB bandwidth in Hz, as

measured on a constant-voltage untuned Transmitting Response curve. The

basic relationship for dynamic k is

f 2 - f 2
k2 - a r

This can be converted to other useful forms.

(f + Af Af
Thusk 2  a (2 - f-

Then V - (fa And if the second

term is very small (as when k- 0.30 or less), k2 = f-fa

In Figure la, Af happened to equal 0.049 frequency units and Af 0.047.
a

Then k' = 0.094 - .0022 ..0918. So k <_ 0.305. This is about 78% of the k

static value.
-4
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If we had ignored the term- Af and simply used k2  'f, then

'al a

k . 0.305. In any event the error is less than 2%.

Figure lb shows the input admittance of a competitive transducer,

similar to that of Figure la. In Figure lb it is very difficult to draw the

B asymptote since the next overtone (nominally the 3rd harmonic) distorts

the slope of B. This is because Qm is high for the overtone as well as

for the fundamental. (We note, in passing, that a high air-Q around any

resonance implies a high efficiency at that resonance.) But in spite of the

difficulty in finding Bo (which is Bclamped) and hence AdB, we can

easily obtain Af. Here Af/f a is clearly 0.047. So again k = 0.30+.

Figs. Id and le show a computer-simulation of a transducer comprised of

a stack of PZT rings in the 33 mode. (Three different values of radiation

resistance were used.) The value of dynamic k from Af is = 0.50.3

The value of static k33 using the measured value Bm = -3.3dB in the

admittance curve of Fig ld (i.e. log Bclamped - log Bfree), gives c atic

k = 0.56. Equally true, using AX = -3.3dB in the impedance curve of

Fig le (i.e. log Xfree - log Xclamped) gives static k 3 = 0.56. The

dynamic k3 is thus about 90% of the static k value, in this case.

For future reference:

static k2 Cm Bm _ ree clamped)mhos from Fig ld by
= 0 + Cm 0 + Bin Bfree mhos

inspection. Using dB: 20 log (1-k2) = 8clamped (dB) - 8free (dB) = AdB.

If we try to do an analogous derivation for k2 using Figure le and

reactances, we run into a problem. It is true that a similar form shows up,

rS
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namely k2  (X clamped X free )ohms*
(Xcld)ohms

But the numerator implies a series arrangement for Xclaped and

Xfre igure 1c, however, shows only a parallel arrangement. What is

needed is another form of Figure 1c. This is discussed at length in

* Chapter 3, where we use the terminology

XmK k z  c

X0 + Xm

Here X is indeed the isolated "mechanical" (i.e. motional)mc

reactance, analogous to Bm above. And Xo' is identical with X free'

* 1-k2  Bclamped = XfreeBfree Xclamped

k2  _ Xclamped - Xfree ohms
Xclamped ohms

"II
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Chapter 2. Further Information Obtainable from IZinl.

The Figures illustrate:

a. Input Impedance magnitude, shown both as 20 log IZI vs. log
frequency and as linear-scale IZI vs. log frequency.

b. Foster's Equivalent Circuits.
c. Determination of Qm from JZJ curve.

Preliminary Note: The operator 11 (parallel), when used with impedance

Z1 • Z2
elements, will mean for example: ZIIZ 2 = ZI + Z2" With admittance elements

it means: YIHY2 = Y1 + Y2. Likewise the operator (series), when used

with admittance elements, will mean for example: Y, Y 1 = Y •Y2

4 Y + Y2 . With

impedance elements it means: Z, Z1  = Z1 + Z2.

A.
-  Introduction. Chapter 2 has two main purposes. (1) The first is to

familiarize the reader with "the other Basic Circuit" (seen in Fig 2e). This

is different in form from "the Basic Circuit" of Fig 2c, which is, in effect,

Mason's modification of the Van Dyke-circuit of Figure 1c. Nevertheless the

circuits of Fig 2c and Fig 2e are interchangeable. The reader should practice

converting rapidly from Fig 2c to Fig 2e or vice versa. The numbers and

ratios are very simple in our repeating examples, often being 3/4 (from 1-k2 )

or 3/1 (from [1k/k2), since our k = 0.50. Hence the converting can be done

in one's head. The pay-off to the reader will be large. For, all the

difficult manipulations required when the circuit of Fig 2c must handle

impedance problems in addition to the admittance problems it is especially

suited to- all this becomes greatly simplified as soon as the second circuit

is available. The Appendix 2-A shows the general method of converting,

following the approach of Shea, "Transmission Networks and Wave Filters".

(2) The second purpose of this chapter is to give an intuitively

reasonable derivation of the relation of the mechanical Q, or Qm' to the

2-1
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ratio IZmax /'IZminI. The standard derivations are much more complicated and

not much more accurate. The present derivation is worth the learning effort.

Figure (2a) shows linear IZini vs log frequency for a low-Q

transducer. Figure (2b) shows log IZ inl vs log frequency for this

transducer when the Q's are much higher. If the frequency scale were linear

in Fig. (2a) the converging asymptotes Xclamped and Xfree would be true

hyperbolas. The log scale compresses the frequency axis and slightly

distorts the hyperbolas. But we will retain a log frequency scale

throughout this handbook because the shape of a curve, thereby, is invariant

as the resonance frequency is moved around. In Fig 2b the asymptotes are

two parallel straight lines.

To show some further differences in appearance of things on a linear

scale vs. a log scale: In Fig (2a) a linear impedance curve is shown,

corresponding to one given value of QM; and in Fig. (2b) log impedance
curves are shown corresponding to three different values of Qm" These

three curves intersect at a point close to the mean frequency, viz.

f f'-a where fr is the resonance frequency and fa is the anti-

resonance frequency, as discussed in Chapter 1. The point of inter-

section is seen, in Fig. (2b), to be located (along the ordinate) more

or less midway between log IZminj and log IZ max. In Fig. (2a), linear

IZmini and IZ max are clearly not symmetrically disposed about this point

(interpolated). And indeed, if Qm approaches infinity, IZmini is = 0 and

IZ maxI is = and the asymmetry is all the clearer. But the two asymptotes

are unaffected by Qm and always enclose this point of intersection.

It has long been observed that a close relation exists between the

ratio 1Zma/ Zmin and the mechanical "quality factor" or selectivity
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factor Qm" The desired relation can be found in the connection between

Fig. (2c) and Fig. (2e). Figure 2c is often taken (arbitrarily)as "the

r Basic Circuit" of a transducer.

1. Foster's Equivalent Circuits

* Figure (2e) is an alternate form of Fig. (2c). The two are exactly

equivalent and are discussed in detail (when Rm = 0) in Foster's paper "A

Reactance Theorem, and in writings by Shea, and Norton.* We will refer to

Fig. (2c) as the Half-Pi circuit and Fig. (2e) as the Half-Tee circuit. In

both circuits, 4 is the electro-mechanical transformer (which is not needed

by Foster et al). Calculations made with either circuit will give the

correct and same impedance values over the whole frequency band.

Now if we reserve Fig (2c) for the band around the mechanical resonance

frequency fr (electric terminals short-circuit) and reserve Fig. (2e) for

the band around the "anti-resonance" frequency f a (the mechanical

resonance frequency for open-circuit electric terminals), the Z

calculations become greatly simplified for the the two regions, resonance

and anti-resonance. We have converted a Half-Pi input to a Half-Tee input

in changing Fig. (2c) to Fig (2e). The additional (purely electrical)

transformer N:1 is merely implied by Foster, but is explicitly used by Shea,

Norton, and others. It turns out that their N is exactly the same quantity

as our k2 , as shown in Appendix 2-A. The equivalence of the circuits of

Figs. 2c and 2e can be confirmed by testing the open-circuit and

short-circuit input immittances, looking first into the left port and then

into the right port. Thus impedances like Rm transform as k4 to become

RRm. (Cf. the conversion of Fig 2d into Fig. 2e.)

*See Appendix 2-A
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As an example, let us consider a transducer with k=0.50 and fr = 10

kHz. The specific value of is unimportant, but happpens to be 5N/volt.

Referring to Fig. (2c), let Co = 1.5nF, Cm = 0.5nF, Lm

0.5H, XmL = 32,000 ohms at the fr of 10 kHz, and Rm = 3200 ohms.

Xm~~E = _ L =
Then for constant-voltage drive Qm 10.

Moving over to Fig. (2d): Co = 2.OnF, Cm = 6.OnF, and N2 :1 or k4 :1 is

1/16:1. Lm and Rm are unchanged as yet. Then progressing to Fig. (2e), Co

and Cm are unchanged; but Lm and R are now divided by 16. Thus Rm = 200

ohms, Lm  .031 H and XmL 2000 ohms at either f or f [This is an

approximate reactance value that an observer at the electric terminals sees

at the "anti-resonance" f of 11.5 kHz. It is more useful for the moment

than the exact value of 2300 ohms which, under constant-current drive,

would give a Qm of 1i.5

The two transformers in Fig. (2e), N:1 and 1, are usually combined

(multiplied) into a single transformer N4 or k/ which is then called

N':l. In the present example this would be .05:1, since k? = !-and¢ = 5,

giving T. But this combining conceals some useful information; so we will

keep them uncombined.
Note that Q is still = 10, even though the (XL, R) impedance

level has dropped by 16 to one, or -24 dB on a 20 log scale. Alternatively,

we can retain the original (XL, R) impedance level by sending Co and Cm

through the N:1 transformer thus multiplying by k' , to become CoN and CmN as
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shown in Fig. (2f). Then C0  = 0.125 nF and Cm = 0.375 nF. This clearly

shows how to compare the resonance frequency fr' at sight, with the

anti-resonance frequency fa' using CmN = 0.375 nF in Fig. (2f). The

anti-resonance f a (electric open-circuit) must therefore occur at a higher

frequency than the resonance fr (electric short-circuit) which uses Cm=

0.5 nF in Fig. (2c). The frequency ratio isIO0.5/0.375 or v/3or about

1.15:1. jThis of course is one reason for having Foster's two forms always

in mind.I  In this handbook the values of 1.15 for fa' and 1.0 for f

will be used in every chapter, along with k = 0.50. Also the Q(for

constant-voltage drive) will usually be arranged to be -10, in sample

calculations. The %, (for constant-current drive) would then be 11.5.

I EBut for convenience we will sometimes let % = Qm' giving the value 10 for

both the constant-current and the constant-voltage situations. And we will

then give it the undifferentiated name

It is sometimes useful to make one more conversion of Fig. (2e), into
4I I

an equivalent represented by Fig. (2g). C0 and Cm are unaffected. And if

I
%m is 10 or greater, Lm is approximately constant with frequency and has the

I

same value as in Fig. (2e). Then the only variable element is Rp, a

variable parallel resistance which has replaced the invariant series RmIm

of Fig. (2e). R is called the inverse conductance of the "tank
p

circuit".

I
2. Derivation of "quality factor" Qm fromjZmaxl and Zminl

From prior knowledge we know that Q1  10. Now however we will

m

try to find this value by measurement, at the input terminals, pretending

that it is unknown. To derive Q1, the "quality-factor" around f form -a
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constant-current drive, we will work with R Now

Rp =(1 + Qm ) R = Qm . RM . (2.11)

From Fig. 2g this is seen to be 100 x 200 or 20,000 ohms, for the specific

example. Then at anti-resonance fa
I I

Zin !jX0 + Rp (2.12)

But the contribution of jX0 is usually small enough so that we can say

w=R' = in12 , R (2.13)an .'p Qm m"

If now we take the ratio I'in ,/Z ZinI which is also known as

IZmaxI/IZminI /(as seen in Fig. 2a) we get

12 R
m~ m

ma Z R (neglecting the small (2.2)
m contribution of jBo).

But this equation is not what we are looking for in order to isolate QIZ It
m

uses both Rm from Fig. 2c, and Rm from Figs. 2e and 2g. So we must

go further.

If we proceed from Fig. 2g to Fig. 2h by sending all impedances to the

11
right through the turns-ratio -, we multiply IZmaxi by k-. From input

measurements we can determine that k = 0.50 and that hence v is 16 in this

case. Then
1 '12

i - = Zma. 16 = R . 16 =Q', (R' • 16) = Q( R2 (.3)

The value of izma formed is thus about 320,000 ohms in this case.
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And then for the general case, IZmaxI x 1/k4 or IZmaxl transformed

divided by IZi gives:

mmm
r,' I 12 xRm 1

.IZmax~ L xIZmin l - m Q m I2 4
' x'

A geometrical meaning of IZmaxi x 1/k' is shown in Fig. 2i, where the

transformed IZmax is superposed on the simple IZmaxJ of the lowest-Q

curve of Figure 2b. The transformed IZmaxI is increased by 24 d8, as will

be shown.

I. If we convert Eq. 2.4 to dB (using a 20 log scale for our dB) and if we

also use some numbers; then, recalling that 1/k or 16/1 is +24 dB:

20 log IZm I + 24 dB - 20 log IZmin = 40 log Qm" (2.51)

or

IZmax IdB - IZin dB + 24 dB 2 Qm dB (2.52)

or

.dB + 12 dB = m dB (2.53)

where AdB refers to Ziat f a minusIZIat fr; and the 12 dB is the value of

1/k2.

Then in the general case, using a 20 log scale:

2IB + (1/k )dB m dB. (2.61

Or, on a linear scale:

71
Q Zm-inl -. Formerly ImaxI k 4  (2.71)

mini k2 2i

2-7



INPUT IMPEDANCE MAGNITUDE

80

60

k2 = 50 -

5(Chl ld 50 L
40 r 1

- IC

L . 204 56 7 891 15 2 3 5I 12 15FIG. 2 a NORMALIZED FpEOUENY FIG 2b NORMSALIZED FRIEO8EMCY

Cm n L0. yCo'2.0 nf N:1
1:0 Veociy21) Lm O.5hy 10 Velocity

05Mm L 3M 0. in . Vlct

FIG. 2c FIG. 2d 0,251[

Co' 2.Ont or NA N
0 1 y(k2:1) 1:0 Velocity C~

2
t)~ 0.125 1l Lm 0.5 hy Velocity

Z in 7 §
6. Zt ohm 01 0.375 rl oh

FIG. 2e 0.25:1 FIG 2f 02:

20.000 oh0.t 13200 Omsa

C; or1 5
90o

.030 or

C'm .31 0. 11n m e

D .5 11:

FIG. 2 ~ l A UO N O S C FIG. 2h 0=10fE PO j~



This equation sometimes occurs in the literature as:

k 2Q 1 /Emax (2.72)

And since Zmax = 1/Ymin (at fa) and Zmin =1 /Ymax (at fr),

kQml = ma , also. (2.73)

Now if we wish to find an expression for Q , the quality factor around

frs we must modify (Eq. 2.71). We could have used only the circuit of
I

Fig. 2c in deriving Qm" It was simply more convenient to use Figs. 2g and

2h in addition. We will now make further use of Figure 2c. We will short

the electric terminals, in order to find fr; and we will observe that

Rm = 3200 ohms at both f and fr (and indeed over the whole band).

Hence the only factor that changes from fa to fr is the reactive term.
m a r

E wrLm I w aLm E I
Now Qm = Rm  . And Qm Rm . So Qm/Qm =r/a.

But from Fig. 2c, (or and Wa w

rr -\Cm C  
Em aY

C O

iCm4 C0  C
Sor V Cm C 0

or < k2

0.375 1 (2.81)

as can be easily seen from Eq. 1.,2.
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Then QE = I XW /1 = Q1 j* -- k (2.82)

r a m

And from Eq. 2.71, Qm I 0 V k (2.91)

-* Now in Appendix 2-A, references are given to alternative derivations of

QE, rather more difficult, which finally give:

E~ ' m' a 1 - k (2.92)

min r k2

But wa/Wr = 1 k= " So we get

E ax F1 k2(2.93)
a/

And we see that this is the same as our Eq. 2.91. (Since Ymax Zmax\ --in TVn/

Returning to Eq. 2.6 and in dB:

Qm 2(dB) = Ad-B+ (1/k)dB . (2.6)

2

Now, the relatively small 1/k factor of 12 dB (in Eq. 2.53) or 4:1,

was due to the relatively large k of 0.50. Thus in Fig. 2b, the lowest-Q

curve shows a MdB of about 21.5 dB. This results in a Qm(dB) of only about

22.75 dB or Q - 13.7.

But when the k is reduced to 0.30, as in Fig. la (repeated here as Fig.

2j), the 1/k 2 factor is 11:1 or 21 dB. And then although AdB is only

9 dB, this results in a Q (dB) of 25.5 dB or Qm 19.

m 2
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The point is that when the coupling coefficient is fairly low, 30% in

this case, the decoupling (of the mechanical branch from the electrical

branch) is high. Hence even a slight bump from the mechanical branch

becomes significant. It means that Qm(dB) is > 0 dB + 21 dB; and hence

that Qm > 11.

This is shown in Fig. 2k, where the IZint of a quartz resonant bar is

given. Quartz has a k of about 10%, so k. - 0.01. Observe that for such a

small k2 the two asympototes are almost touching; AdB is very small; and

fa - fr is very small. That is, the "rectangular window" enclosing

fa' fr' IZmaxi' and IZminI has shrunk on all sides. Then even if we

call AdB = 0 dB, 1/k2 = + 40 dB and so Q > 100. In such an example another

indication is usually given that Q is high: the tiny peak and tiny dip are

very sharp.

r
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TABLE I

EXAMPLE OF THE MEASUREMENT OF Q

Iwhen k =0.50; 1/k2 = 4:1 or +12 dB)

Using Af from Using AdB from
Reactance Curve Impedance Magnitude Curve

QI f 4 - f 3

fa-~ (1) Rmech 100 ohms MKS

AdB = +77.5 dB
+13.5 dB
+64.0 dB

AdB/2 = +32 dB

Q(dB) = +32 dB + 12 dB =44 dB

Q 91 Q- 160
m m

(2) Rmech = 5000 ohms MKS

AdB +62.5 dB
+31.0 dB
+31.5 dB

AdB/2 = +15.8 dB

Q(dB) = +15.8 dB + 12 dB = +27.8 dB

26 Q; 25

(3) Rmech = 10,000 ohms MKS

AdB +57.5 dB
+36.0 dB
+21.5 dB

AdB/2 = +10.8 dB

Q(dB) = +10.8 dB + 12 dB = +22.8 dB

; 13 Q -14
m i



Table I shows a comparison between Qm via Af, from the reactance curves

of Chap. 6;' and via AdB between JZmaxI and IZmin'. The transducer under

consideration is a realistic computer-simulated transducer whose

impedance-magnitude response is shown in Fig. 2b. A number of

I reactance-response curves are shown in Figs. 61, 6m, and 6n. The large

detailed originals of these were used in preparing the Af portion of Table I

(where Af = f4 - f3). For values> 100, the Af was more difficult to read

than theAdB. For lower values the two methods seem equally reliable.

The Af method has the attraction that it does not require a

determination of 1/k2; it can be read off directly from a reactance curve,

or from an impedance circle diagram (see Fig. 7.2).

On the other hand the AdB method has the attraction that it is quick

and requires no sophisticated instrumentation such as a vector impedance

analyzer which automatically resolves Z into R and X. This method is then

convenient when only a voltmeter and an oscillator are available.

2 - 11
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Appendix 2-A

Reversing an L-Network

Figure 2-A.1 shows the basic network we will work with. We wish to

reverse only the C and Cm portion, and not touch the L and R portion.

The solution requires adding a transformer with turns-ratio N:I. (Note that

we are allowed to reverse merely the central portion of a network, without

disturbing the elements to the left or the right of it.)

To find the desired relationships, we would ordinarily equate the

open-circuit and short-circuit impedances Z from each end of Fig. 2-A.3, to

the respective open-circuit and short-circuit impedances of Fig. 2-A.4. Or

equally well, we could work with the admittances Y. But since the Y of a

capacitive network is wC, we can drop w and equate the various capacitances C.

We will use Co as our reference capacitance (Fig. 2-A.1), and express

all other capacitances as fractions of CO . In Fig. 2-A.1 we are given the

value of a, since we have measured the ratio of Cm/Co . We will solve

for the other values b, e, and N in terms of a. (We have written in the

answers, however, to allow the reader to check things as we proceed.)

1. Open-circuit condition. (We use only terminals 1-2, 3-4.)

c- 2) C0  be C (2-Al)

Coc a C = eN2 * C (242)

2. Short-circuit condition. (We use only terminals 1-2, 3-4.)

C 2) sc (a+l) • CO = bCo  (2-A3)

C3 4 ) = aCo  (b+e)N2 * C0  (2-A4)

2A - 1
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We can use any three of these four equations. Thus:

b = a+1 (2-A5)

b + e = be; e= b; e (2-A6)

eN2  a N2 = a 1 (a) (2-A7)a+1 a eT ~a T
-N' =  ; * = (2-AB)

a +

But our definition of k2 has been Cm which equals aCo (cf. Eq. 1.1)
Cm+Co (a+l)C 0

So N- k2 = a. . (2-Ag)

We will now rework the a formulas in terms of k
2 "

a V
2  (2-A10)

h a+- 1 ( (2-All)

e - a+1 (2-A12)

In the present example since a =1/3 (Fig. 2-A.1)

k2  = 1 -N

I2 Then k .1 a

i 4

1b

2A -2
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Note also that the relation of the two shunt elements is

C2
S= k2

Cm

And the relation of the two series elements is

._- : .......... ... ... = k2.
Co

Figures 2-A.5 and 2-A.6 show the two networks drawn as 2-terminal

rather than 4-terminal networks. (This is somewhat the way Foster might

draw them.) In addition we have sent all elements through the transformer.

Figure 2-A.5 high-lights the resonance frequency fr of the networks.

Figure 2-A.6 high-lights the anti-resonance frequency f a of the

network. A simple mental calculation gives the ratio of fa/f r9 thus

again showing the usefulness of using the two Foster forms.

2A - 3



References:

Shea, T. E.: "Transmission Networks and Wave Filters", Van Nostrand.

1929; 1938. pp. 135-6.

Norton, E. L.: U.S. Patent 1,681,554 (1928)

Foster, R. M.: "A Reactance Theorem", Bell System Technical Journal.
p. 259, (1924)

2

I
:F 2A - 4



Chapter 3. The reactance curves of the two basic circuits; and
how to sketch them "at sight".
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CHAPTER 3. The Reactance Curves of the Two Basic Circuits; and

how to Sketch Them "at sight".

We will arbitrarily select the circuit of Fig. 3a as our Basic Circuit and

derive all the other circuits from it. We could as well have chosen Fig 3c as

our basic circuit; and some writers do. This is merely another form of Fig

3a, i.e. a Half-Tee instead of a Half-Pi, as shown in Foster's Reactance

Theorem paper for the case of infinite Q; and as discussed by Shea, Norton,

and others. Fig 3a, the Half-Pi, is especially useful when behavior around

the resonance region fr is explicitly asked for. Fig 3c, the Half-Tee, is

especially useful when behavior around the anti-resonance region fa is

explicitly asked for. Both circuits give identical values for Zin and
IZcsc, I.an

Z ins Z°C ,zSC Yin and Yin, the series reactances X and Xs, etc.

jX .(R + jXm )
In Fig 3a, Zi jXo  m 0 m m Rs + jXs (3.1)

o m m

Here, + jX will mean + j(Xm + X ), where Xm wLm and X That is,

we use + JXm for - Jem" We therefore never expect to see a term-Jm.c m

This is the A.S.A. convention. (Some books use - JXm for - j To convert

to the convention used here, simply multiply Xm , every time it appears,

by (-I).)

Now the analysis of Zin by Equation 3.1 gives unsatisfying results when

RmO, and especially when Q is very low. However, the analysis becomes

clear when Rm= 0 and hence Q= -. Figure 3b, dashed curve, is then the

resultant of the series-resonance circuit Xm connected inresultant Xmc X m L cnetd

parallel with Xclamped . Thus, the series-resonance branch goes to zero at

the resonance frequency f r shorts out Xclamped' and makes the total XS

3 -
T. 3-1
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equal zero at fr. As the frequency increases, the series-resonance branch

changes from capacitive to inductive and soon anti-resonates with Xclamped

at the anti-resonance frequency fa' making the total Xs equal infinity at

fa" It then becomes capacitive again and follows the Xclamped asymptote.

But when R> 0 and Q is low the reactive response curve Xs (Fig 3b, thin

Solid Curve) in the region of resonance fr and of anti-resonance fas has

no simple intuitive explanation from this network. Indeed it is not obvious

how this purely reactive curve (derived from Fig 3a) manages to stay below the

axis both at fr and also in the vicinity of fa" The reactive behavior of

Figs. 3a and 3b is discussed in greater depth at a later point.

Their susceptance behavior is discussed in Chapter 4. For, it turns out

that in the analysis of the circuit of Fi9 3a, it is more useful and

instructive to convert Zin to Yin and work with the admittance components.

n Y _ 1 i
Then Yin - 1 - XI + Z--" Thus Yi =jB + Ym (3.2)

in Zin jXj Zm 0 ,Z m in 0

The resultant variable parallel resistance R (in parallel with Co);
p 0'

or better, variable parallel conductance G, its inverse, which is the real

component of Ym (see Chap. 4), will then be independent of such variables as

cable capacitance added in parallel to the electrical capacitance C0 . Such

independence will not exist for the variable resistance Rs (a series

component; see Chap. 5) which is the real component of total Zin in Eq. 3.1

and also (with identical values) of total Z. in Eq. 3.3. This equation

pertains to Figures 3c and 3d.

Z in = jX 4  Ztank = jXo + (Rm + jX mL) 11 jX'md = Rs + jXs (or Rs + jXs).

(3.3)

VIn both Z equations, 3.1 and 3.3, the effective variable series resistance

Rs will change every time the cable capacitance changes. This is easily

3 - 2
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seen in Eq. 3.1, where an added cable capacitance modifies X. (e.g., in the

denominator) and hence modifies the resultant Rs. It is less easily seen in

Eq. 3.3, but we know that it must be so here also. LMechanism: the cable

capacitance modifies not only X but also X (by changing the value of the
0

coupling coefficient k); thence the Q of the tank (Fig. 3c) and thence Ris 1

The components of Y. and Zn will be analyzed in Chapters 4 and 5.in in
We now turn again to the illustrations of Chapter 3.

Figures 3b and 3d look alike - grossly. But many details are different

1. In Figs. 3c and 3d, Xclamped must be derived, from X

2. But in Figs 3a and 3b, X exists alone, as Xo.clamped0

3. In Fig 3d the operator ("series") tells us to add + X to them

hyperbolic baseline Xo (free), thereby first raising and then lowering the

position of the curve; which also means first lowering and then raising the

value of the curve. This distinction arises during inversions, as from G to

Rp, B to Xp, etc. The factor Xm is discussed in Chapter 5. It is shown here

in Fig 3e.

4. But in Fig 3b the operator JI ("parallel") calls for something more

complicated than adding. For the sake of illustration, we will work here only

with impedance components rather than admittance components. We must start

with the other hyperbolic baseline X0 (clamped) and then "parallel" the

contribution of the reactive portion of Zm or of (Rm f jXm) after it

has been transformed to the equivalent parallel representation (RplljXp).

[See Chap. 4 and Fig. 4i.] A plot of Xp is shown in Fig. 3f. We then represent

total Zin as Rp 11 [jX0 IIJXPJ . Note that the parallel motional

component X is quite different from the series motional component XM

which is shown in Fig. 3e. In fact for the OO-Q case they would be duals

3-3
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if only they were centered about the same reference frequency. This can be

seen from Fig 3f, which itself will be discussed further at a later point.

Now, XolJX p still does not give us the Xs of Fig 3b, although

paralleling any curve of Fig 3f with the X0 (clamped) curve of Fig 3b gives

a resultant curve which, for the first time, somewhat resembles the family of

curves in Fig 3b. (In fact, away from fr and fa agreement is perfect.)

As the final step, we must now "parallel" R with XoIIJXp and

convert this (which of course is total Zin) into the series frm Rs$X s

or identically, Rs  Xs.  We will then have, explicitly, the exact reactance

curves shown equally correctly in either Fig 3b or Fig 3d.

The above exercise helps explain why it is easier to deal with Fig 3a via

parallel susceptance and conductance components rather than via parallel

reactance and resistance components; except when Q is-M-0. The analysis via

the admittance components is treated in Chapter 4. We will now elaborate on

Fig 3b and discuss how to sketch out the paralleling of X with Xp "at

sight".

(a) We start at the low-frequency region by paralleling C0 and Cm. We

travel up the X(free) hyperbola until we approach fr" (b) At fr if Q is

high (dotted curve and dashed curve), the Net X must 0 since X has been

shorted out by Xm. But if Q is low, the Net X 1 0 at fr (solid curve).

IThis low-Q case is not easily handled by the Fig 3a-approach. But it is very

easily handled by the Fig 3c-approach.j (c) Jumping to the region far above

3-4
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fa we see that the parallel branch, Xm, (Fig 3a) has jammed and that only

the X branch is functioning. So we are now traveling up the Xclamped

hyperbola, namely Xo.  (d) Now we back up. We know from Foster's Reactance
0

Theorem that the resonance at f must be followed by an anti-resonance atr

fa" How to locate fa? One man's anti-resonance is another man's

resonance. We look from the mechanical terminals toward the open-circuited

electrical terminals, and see a "mechanical" resonance caused by

x x Xm Xo. This is f amade higher than fr because of

X in series. Using numbers: Cm C0 is 0.375 nf = Cnet .

Then Cm/Cne t = 0.5/0.375 = 1.33/1. Then the square root is 1.15/1. And

this is indeed the ratio of fa to fr"

We now add a comment on Figs. 3c and 3d. If we were to take all components

through the transformer k2:1; as shown in Fig 2f, we would get at once

Cm C0, with the value 0.375 nf. This combination would now appear

as the single "motional condenser" Cm - These circuits of Fig 3c and Fig 2f

will give quantitative answers around fa more readily than will the circuit

of Figure 3a.

I
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Chapter 4. Derivation of the Susceptance and Conductance curves.
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CHAPTER 4. Derivation of the Susceptance and Conductance Curves.

Preliminary Note: The operator I (parallel), when used with impedance

ZI • Z2

elements, will mean for example: Z111Z 2 = 7----Z-" With admittance elements

it means: Y1iHY 2 .- Y + Y2. Likewise the opeao (series), when used

-. ~Y -, Y 2
with admittance elements, will mean for example: Y Y2 - With

YJ +  Y 2

impedance elements it means: Z, Z 2 = Z1 + Z2.

Figure 4a shows the simplified Basic Circuit that we will work with for

susceptance and conductance. All "mechanical" quantities have been

transformed to the electrical side, where they are now called "motional"

quantities. They are now components of Zm, the "motional impedance".

1

The term I jXo I or Bo, the clamped susceptance, is plotted in Fig. 4b.

It will act as a bias or a new baseline for the motional susceptance term B

of the "motional admittance" Ym" A linear frequency plot was chosen, to

show how simple the bias function is. In general, we will use log frequency

plots.

The termYm= = Rm 1 resolves into G + jB. It is shown in
Tm + jX

Fig. 4c, which is equally valid for Ym or ZM .

1 Rm " JXm Rm -XmjX m m jXm Rm + Xm2 2  (4.1)

Rm -Xm

Thus Gm -- and Bm Rm + (4.2)
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Chapter 4. Derivation of the Susceptance and Co nductance curves.
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We will ignore Gm for the moment and concentrate on 8m .

Bm = Numerator/Denominator = N/D. D is 1Zm1 and 1 = Ym 1 It plots

as shown in Fig. 4d: normalized(mhos vs. log frequency. The "log" reveals

the left-right symmetry which is obscured in a linear frequency plot.

N is - Xm = -(wL m - 1 ). Now this describes a negative L and a negative C
Cm

in series. So -Xm is the reactance of a negative series-resonance circuit.

It plots as shown in Fig 4e.1 and is merely the mirror-image of the usual

plot. This becomes clearer if we look at Fig 4e.2 which uses the familiar

linear frequency axis.

When N of Fig 4e is multiplied by l/D of Fig 4d, we get Fig 4f. Note that

this multiplication automatically produces at fr the negative slope which

always shows up, except when Q is infinite, as the curve crosses the axis.

Most textbooks fail to comment on this negative slope, probably because of

concern about violating Foster's Reactance Theorem (which is actually not

violated). This curve is found also in plots of the hyperbolic tangent

function, tanh (c+j ), which describes a lossy transmission line. It should

be noted that negative elements are not a mathematical fiction. They can

actually be built now, and they are stable.

In detail: Figure 4f shows, dashed curve, the typical susceptance plot of

a series-resonance circuit having infinte Q. This curve goes from + Wto - 00

without passing through zero at fr. But when the Q is finite the curve,

instead of having the value infinity at the susceptance "pole" f has the
r'

value zero--a rather drastic exchange. Multiplying N by 1/D gives the

solid curve of Fig 4f when Q<00. Thus for a low Q, the IY m12 curve or

1 of Fig 4d has a finite peak at fr" But the -Xm curve, which willRm 2 + X m 2r

4-2
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Chapter 4. Derivation of the Susceptance and Conductance curves.
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multiply with it, has a zero precisely at fr' The zero term wins out. So

the product is zero.

If now we let R go to 0 and Q go too<), -Xm is of course zero at fr"
2 2

But JYmI is oo at fr. The square term wins out; so the product, or

net B, iso-orather than zero at fr when Q is coo .
-.4 -X 1

The other way to show this is: B m ) . And this gives a
0 + X1  ( X~

m

simple c~oat fr" This 00 - Q curve is of course merely the inverse of the

negative series-resonance curve (-Xm) of Fig 4e.1. Enverting the j-operator in

1 1 produced the desired negative sign; i.e. 1 would be all wrong]
ZM jXm (+Xm )

Another circuit equivalent to the "motional branch" of Fig 4a and commonly

used for analysis of Y functions is shown in Fig 4g.1. This looks much like

the dual of the circuit for Zm shown in Fig 4c; but of course it must not be!

[A circuit and its dual cannot both represent the same Zj Since all the

elements must be variable anyway, we cannot call it wrong. But is is not

terribly useful, except right at resonance. A more useful equivalent circuit

is probably that of Fig 4g.2. This at least hints at the proper response at

very low frequencies and very high frequencies. It fails to be useful at

resonance, however.

- _Xm
Actually the equation G + jB = G + j + demands only the equivalent

Rm m2

circuit of Fig 4h. But the equation certainly implies that a better equiva-

lence might exist.

And indeed a good approximate equivalent circuit for the Bm component

alone of the Y m of Fig 4h does exist. It is shown in Fig 4i and it contains

only fixed elements. It is a lossless series-resonance circuit in series with

- 4-3
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a lossless negative parallel-resonance circuit. Hence Bm = Bs  (-Bp) or

-B -Bs

Bm = -Bp + Bs  These terms B series and B parallel are

obtainable from Fig 4c. [The mechanism by which Fig 4f's low-Q curve is

obtained, is a little different this time from above. Although the curve for

-B is practically identical with the -Xm of Fig 4e, we do not multiply
p 2

the curve this time with Vm 1. Instead, we multiply it with Bs,

obtaining a constant value for the numerator. We then divide by (B + B

This sum, the denominator term, has a shape somewhat like one cycle of a

cosecant curve; hence its inverse or 1/D will look somewhat like one cycle of

a sine curve: it starts with zero value at d-c, rises to a peak below fr'

goes to zero at fr' proceeds to a negative peak, and then heads up towardrI

zero value. Furthermore, the higher the value of Q in Fig 4i, the more the

"sine curve" is distorted, the peak moving closer to fr' and the slopes

conforming better to Fig 4f's solid curve. And this is just what we need.]

Actually, mentally sketching out the current through -B p Bs (cf.

Fig 4i) is the preferred way, whenever possible. Thus: at the resonance

frequency, where Bs =coo (calling for an o current) Bm reduces to -B
5 P,

This equals 0 and calls for a 0 current; which is what we observe in Fig. 4f.

At very low frequency and very high frequency, where -B is very large, Bp m
reduces to Bs; so -Bp has no effect. This also is apparent in Fig 4f.

The effect of the coefficient Q is to control the slope of the -B curve
p

and hence the size of the positive peak and negative peak of Bm itself.

This -Bp curve is practically identical to the -Xm curve of Fig 4e. As

Q -Po, the curve becomes steeper and steeper by rotating clockwise toward

the ordinate axis. This Q is closely related to the true Q, which is
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related to Rm.  As an aid to working with these susceptances, it is

permissible to construct the dual circuit and work with its reactances. The

curves are the same. The dual circuit to Fig 4i is shown in Fig 5i and its

response curves are shown in Fig 5f.

One term remains to be discussed: , of Fig 4i. No useful equivalent

circuit using constant elements has appeared yet. The plot of G appears in

Fig 4j, dotted curve. The curve is, in effect, the same sharp curve 
IYm12

Rm

that appears in Fig 4d, solid curve. For, G = Rm2 + Xm2 or Rm . Jm 12 . So Rm

is just a scale factor; and it is a constant. The d-c value of G is zero.

The maximum value is 1/Rm; 0.31%10-3 mhos in this example.

Note that the dotted curve in Fig 4d for 'Ym' or 1/,'Rm2 + Xm2 is
m

much less sharp. This curve acts as the envelope for the rectified B curve

shown in Fig 4j, solid curve. For, B = Rm2 + Xm2 or -Xm . 1Ymt2; and the -Xm
2

factor (shown in Fig 4e) acts to "fatten up" the 'Yml curve at low

frequencies and high frequencies, into 'Ym' (using rectification appropri-

ately). This is seen alternatively if we let Rm go to zero (hencec> Q).

Then B - -1 Which is merely the inverse of Fig 4e, (namely the C4- Q curve
m

of Fig 4f). And this of course, when rectified, must follow the 'Ym1

envelope except near resonance.

The two peaks of the rectified B curve (Fig 4j) intersect the G curve at

exactly half the maximum value of G. (This can be proved analytically.) The

two associated frequencies f, and f2 are thus the half-power frequencies.

And these determine QE, since QE = That is, at these two frequencies,

.
4. I

V 4-5



Chapter 4. Derivation of the Susceptance and Conductance curves.
Flg~a FIG 4b The Bo component of FG4

(XmCJ input susceptance of0.,n
xm~~~~. "capd tasue 0.5 hy

-r----1,x L mL Zm Zm I Lm R0 . for -*. Cm RYIN R *5fl QE1 3200I m )mQ.1 ohm
p LINEAR FREOUENCY

ZIN = Xo 11Zm

II I ~ o+Y NUMERATOR TERM or N: NEGATIVE SERIES RESONANCE RESPONSE I-XmIX0 x o 
AND

-' POSITIVE SERIES RESONANCE RESPONSE (-XmI
NEGATIVE SERIES RESONANCE RESPONSE

xr,,
or VS (LINEAR)

Xii -[WLm - -w -- ] FREQUENCY
(t/OENOMINATOR) TERM.

ADITTAN4CE JUAED L, - w- 3 VS (LOG)I ........
O"MOTIONAL" RANcH.lvm1 FRQECY..........

0 0

.e .707

4 Y",rOR 
...... -XmI)

.5 6 .18.91 1.5 2 2.5 .14 2 .5 1.0 2 5 0.2A'6.1 01 2' 1 6 2.0 2.6 30FIG 4d LOG FREQUENCY FIG 4e .1 LOG FREQUENCY FIG 4e .2 LINEAR FREQUENCY

.motional"
SUSCEPTANCE aEm

LOW +J--- Goa n II

I Zm

4FIG 4g. 1 B
2

.2.

.rr..or 
or

A" IM IFIG 4g.2

4 5 .6 7 .8.91 2
LOG FREQUENCY

F[G 4f Cm 0.5 nf

Ym B erie-RECTIFIED SUSCEPTANCIE Bi,

Lm 0.5Shy Seis GIII to

or -CQ' paa~or
Zm * mj

FIG 4h FIG 41 1 19 5 2 2 5

FIG 4j LOG FREQUENCY j



Ym MIor I is 0.707 of 'YmI max or I max (see Fig 4d); and these are thus

called the -3dB frequencies (using a 20 log scale). Since power at these

frequencies equals E inx(0.707 I max) x cos 450, the power is 0.50 of maximum

power. But alternatively, at these two frequencies the G value is 0.50 of G

max. And since power also equals E2 x G, the power is clearly reduced here
in

to 0.50 of maximum power. Hence again, -3dB; this time using a 10 log scale.

A study of Fig 4d will clarify these points.

4
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CHAPTER 5. Derivation of the Reactance and Resistance curves.

Figure 5a shows the simplified Basic Circuit that we will work with for

reactance and resistance. All "mechanical" quantities have been transformed to

the electrical side, where they are now called "motional" quantities. They are

now components of Zm, the "motional impedance". Then Z in equals JX o+ Zm"

The term Xo , the "free" reactance, is plotted in Fig 5b. It is a hyper-

bola. It will act as a bias or a new baseline for the motional reactance

component of Zm.

The term Z consists of a resistance and a reactance and is j m II (Rm +
, mC

jXm). By inspection Z is seen to be a simple damped "tank circuit", as seenm M

in Fig 5c. , ( ,

Ah:Z' = c(R m + jxj) jX c Rm - Xc . X Rm jXm
~Then: Zm =• (5.1)

I . l l

Xc (m+ 9  Rm +Jm Rm ~ m

Note that jXm is the series reactance j(Xj + Xc), obtained by going around

the loop in Fig 5c.
-i , -X X m + Xc(Xi + Xc)R c + Xc.Rm

Xcg m m X;m (52sR2e+ X 2 Rm2++ Xm2 5.2)

R -(L /C )m + R 2(-1/
z Rm +j D m (5.3)

And the denominator D = Rm  + 2
m XM

This compares quite closely with Chapter 4's formulation for Ym"

Rm  "mY + j  ;but here D= R2 + X2  (5.4)

m D D m ni

G parallel +jB parallel

SOME DIFFERENCES:

Z always has the terms

Ohms 3/IZ12 + j Ohms /IZ1  = Rs ohms + jXs ohms.
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Y always has the terms
2 2

Ohms /IZI + j Ohms/IZ = G mhos + jB mhos.

G goes to zero at d-c, as seen in Eq. 5.4.
I , X

Rs goes to Rm at d-c, due to the factor (X)
2, as seen in Eq. 5.3 and in

Figs 5a and 5c.
X s I

X has an additional factor, (-1/wCm).Rm2 , which perturbs the Xs curve

slightly, as seen in Eq. 5.3

[The mechanism of the perturbation is as follows: the curve of the factor

-Xm . (Li/C)in Fig 5e has its axis-crossing shifted to the left and down, since

it is now sitting on a -1/WC baseline (like Fig 5b). This action in turn

shifts the whole "simplified Xs curve" (Fig 5f) to the left and down, thereby

lowering the antiresonance frequency fa" The lowering is given by the

relation w = w fI-I/Q"]
0

We will ignore the real term R for the moment and concentrate on Xs =

Numerator/Denominator = N/D.

=R +X or 'Zn
2 where Z" is the series impedance for a current

looping inside the tank. (See Fig 5c). (This is always the meaning of the

denominator when any two networks are paralleled.) Then 1/D is -4-- or IYm12.
IZmI2

Its response is shown in Fig 5d, solid curve.

Note that although D describes a series-resonant circuit we call its

resonance frequency fa because it is merely another way of looking at the

anti-resonance frequency of the tank. Now, fa occurs at a higher frequency

than does fr of the Y curve in Chapter 4. This can be easily seen by looking

at the values of Cm and Lm in Fig 5c or Fig 2f, as opposed to the values of Cm

and L. in Fig 3a or Fig 2c.
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In addition we will simplify the XS term of Eq. 5.3 by letting the factor

(-1/C')oR '2 = 0. For when Q 10, this factor performs only a small perturba-m

tion on the main factor -(L /C ).Xm . We then see that Xs should be very

-X -(L /C ).X
similar to the Bm term in Fig 4f. In fact Bm - m, whereas Xs ~ m

I mIZml

L'/C is merely a scale factor, of dimensions Ohm2. The minus sign is present

in both terms. Zm is the impedance of a series-resonant circuit with a reso-

nance frequency fa somewhat higher than that of Zm (cf. Fig 4c) with its

f That is, Xm resonates at fa' a frequency somewhat higher than the fr of Xm.
r Figr

Fig 5e shows-LJ/Cl.Xm. And Fig 5f shows the resultant Xs. Comparison

with Figs 4d, 4e, and 4f shows a surprising similarity between the motional

reactance-component curves and the motional susceptance-component curves, even

though duality has not entered the discussion.

We now turn to Figures 5g, 5h, and 5i. These all are possible equivalents

" to the motional branch (Fig 5c) of the total circuit (Fig 5a). A circuit

commonly used for analysis of Z functions is shown in Figure 5g. This is

useful at low frequencies and high frequencies but fails to be useful at

resonance when Q <co.

-(L/C )Xm
Actually the equation RS + JXs= Rs + j demands only the

S Rm2 + Xm2

equivalent circuit of Figure 5h. But the equation certainly implies that a

more useful equivalence might exist.

And indeed a good equivalent circuit for the Xs component alone of the Zm

of Fig 5h does exist. It is shown in Fig 5i and it contains only fixed ele-

ments. (Actually it is the dual of Fig 4i.) It is a parallel-resonance
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circuit Xp in parallel with a negative series-resonance circuit (-X*s). Hence
. '

=-X II Xp or X; = , . [The mechanism by which Fig 5f's low-Q curve

is obtained, is similar to the mechanism given in Chapter 4. The curve for

*I

Xs is basically given by Fig 5e. The curve for Xp is identical with the--<- Q

curve of Figure 5f. Multiplication and division finally produce the low-Q

curve of Figure 5f, just as described in Chapter 4.]

Actually, mentally sketching out the voltage across -X s 1 XP (viz. sketch-

ing out the impedance of the combination) is preferable, wherever possible.

Thus: at the antiresonance frequency f , where X isro , X reduces to -X
a p s s

This equals 0, which is what we observe in Figure 5f. At very low frequency
* I I .

and very high frequency, where -Xs is very large, Xs reduces to Xp; so -Xs has

no effect. This also is apparent in Fig 5f. The effect of the coefficient Q,

is to control the slope of the -Xs curve (Fig 5e) and hence the size of the

positive peak and negative peak of X itself. As Q -, the curve becomes

steeper and steeper by rotating clockwise toward the ordinate axis. This Q is

closely related to the true Q, which is related to R' and to R m
I m

One term remains to be discussed: Rs of Figure 5i. Rs is identical with

R in of Chapters 6 and 7, since the addition of C0 does not affect this R.

No useful equivalent circuit using constant elements has appeared yet.

The plot of Rs appears in Fig 5j. The curve is nearly the same sharp curve

ly12 that appears in Fig 5d, solid curve (cf. also Fig 5k).

mI 
1 2

For, Rs  R ) or (X+) 2m So the numerator N is (5.5)

m m

5-4



I~ont velocI ; *-y~I N F f

V- 4  -~ LM INPUT WREC TANCE
I om 0 A F=O

FIG Sa6 lye 50 2IM T~

0 -3

.4

Z1m 0.031 hy 6

'Y"m 0.f 001 0203 04 0506 07 009 1 1 112 I

.. 0 200 M S FG5 LINEAR FREQUENCYSCL

.4* NUMERATOR TERM:
NEGATIVE SERIES RESONANCE RESPONSE

FIG SIC

[Wd L~n.....1 W-, C VS(LOG)
/i)Z.;,)

2 
omotons, loop C j ROEC

ALSO AI orn Constant I 1

.8 .707

i.
4  

_

.2 o11 or Y-n,'
2 I fa6

.5 .6 7 6.91 1.15S_________________________
LGFEUN .14 1 2 7

FIG 5d LGFEUCYFIG So LOG FREQUENCY

simplified "motional" REAcrA4cEx 0r*

Ia [] o

6. IP
-I. W2. x'

FIG~FI 6gtif

LOG FRUENCY

-RECTIFIED REACTANCE W.

X' 8 orX'motRESISTANCE R's IS SINPIFED na 1Im~
A20000 - RSISTANCE i

- C 'm /Q ' 1 5 ,0 01 
1

IS - XS

00

R', MAVALUE -a20,000 OhmS) 2-

0.............-6111 2 5661 16 s2

NOR1 I j 40MALIZED FREQUENCY FI kLOG FREQUENCY

i IFFGSiF



! i 2

basically a simple scale factor, Rm; times the perturbation factor (X C) which
I I

acts to raise Rs above zero at d-c, as seen in Fig §j. The d-c value of Rs is
a 2 a"

Rm itself; 200 ohms in this example. The maximum value Q ; 20,000 ohms

in this example.

Note that the dotted curve in Fig 5d for "Ym' 1/ R 2 + Xm2 is much (5.6)

less sharp. This curve acts as the envelope for the rectified Xs curve shown

I '
, m - (L I/C ) , 2

in Fig 5k (solid curve). For, Xs  R + , or -Xm * (L /C ) iYmI ; and (5.7)

R;m X~ m m Y~ n 57
I ,IU ,

the -Xm L /C) factor (shown in Fig 5e) acts to "fatten up" the "Ymi curve

at low frequencies and high frequencies into Y. (using rectification appropri-

ately). This is seen alternatively if we let Rm go to zero (hence cc Q). Then

mIC

= L/C) , which is merely the inverse of Fig 5e if we normalize the scale

factor (L /C) for the moment. That is, this inverse of -Xm is merely the

- Q curve of the Xs family in Figure 5f. And this curve, when rectified, is
11

the IYmj envelope of Fig 5d - except near resonance.
a I

The two peaks of the rectified X curve (Fig 5k) would intersect the Rs

curve almost exactly at half the maximum value of Rs, if we removed the pede-

stal (of approximately Rm ohms d-c) on which the left leg of the Rs curve is

standing. When the Q is >  10, a simple counter-clockwise pivot-

ing of the Rs curve around the right-leg extremity, down to the frequency axis,0" Ia
would produce a good "simplified curve" )R. The two frequencies of intersection

5-5
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f, and f2 , of R" with Xs would then be the half-power frequencies. And these

I f
determine Q since Q a That is, at these two frequencies, IZ mI or E

f 2 -fl

is 0.707 of IZ mI max (see Fig 5d) or of Emax; and these are thus called the

-3 dB frequencies (using a 20 log scale). {Some approximations to 17mj for

high Q are given in Appendix 5-A.} Since power at these two frequencies equals

Iin (0.707 Emax) cos 450, the power is 0.50 of maximum power. But

alternatively, at these two frequencies the R" value is 0.50 of R" max. And
S S

since power also equals I "nR", the power is clearly reduced here to 0.50 of
in s

maximum power. Hence again, -3 dB; this time using a 10 log scale. A study of

Fig. 5d will clarify these points.
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Appendix 5-A: A Useful Approximation to the Input Impedance of the Motional Network.

An approximation to the input impedancelZmJof Fig 5c's tank circuit, is

shown in Fig 5d. The dotted curve represents

lYmI or orlzm I V-

And in the region around antiresonance, when Q 10.

i Z' Constant

Note also that for constant-current drive, E'#IZmI.

We will now derive this 1ZmI approximation and two others, starting from

Equ. 5.2 or 5.3 and squaring it.

Then IZm1  Rm 2 Xc4 + (X c X ) . Xm2 + 62

#1 (R 2+ Xm )2
M m

There are three interesting frequency regions and hence three different

approximations.

1) Near d-c, Xm4 in the denominator takes control. It equals X14 and so

IZ'1 R'2 and

m m

Zm Rm the d-c resistance of the tank. (5A.2)

2) Near fa' IXci = IX - Hence
R I I g I

IZ' 12 RM 2 X 4 + Xc4 XM 2+ 62Zm m (5A.3)

( 2 + Xm2)
2
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IZm 2= Xc4 ( 2+ Xm2) + 62 (5A.4)

(R 2+X 2)
m m

Z,2 X , 4 62

2m 6X 2) WhenQ > lO, 2 ,.

(R 2+ XIx1
ThenC .X (LIT m  C (5A.5)2 

t

Rm 2 + X m

Note that (L /C') is a constant.

3) Above fa' Xm4 takes control. It now equals X 9.

22

Xz 2 0 + (Xc * X )2 2 + 0
f m C - (5A.6)

(R 2 + Xm2

m m

I ZmI X 2

1Z m I Ixcl WC r (5A.7)

This is the reactance of the motional capacitance Cm of Figure 5c.
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Chapter 6. The combining of component responses from Chapters 4 and 5; and comparison
with responses from Chapters 3, 2, and 1.
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Chapter 6. The Combining of Component Responses from Chapters 4 and 5;
IRPT ,u and Comparison with Responses from Chapters 3, 2, and 1.

0 SUSCEPTANCE SIN
O A

The aim of this Chapter is to dis-
046- play Figs. 6g (above, right) and 6h

040- ,(below, right) and to review how they were

, created. Figures 6g and 6h are our first

examples of a susceptance curve and a re-,10
a "24.. actance curve actually generated by a com-

016 , puter performing a realistic simulation of

'- . an experimental transducer. (The "clamped"

o O or "free" bias curve was plotted manually.)

Figure 6g (above) is basically the
d 5 7 ~ 9 112

NORMALIZED PEOUFNCY sum of Fig. 6b (motional susceptance Bm )

in parallel with the solid curve of Fig. 6a, B - clamped or B0 , a bias

curve. They can be conveniently added at f or 1.0. There is also shown in

Fig. 6a how the linear bias curve B0 (clamped) distorts when a log frequency

scale is used (as in Fig. 6g). Figure 6c shows the basic circuit which is the

most useful starting point for obtaining Fig. 6g.

Figure 6h (below) is basically the sum of Fig 6f (motional reactance Xs) inI

series with the solid bias curve of Fig. 6e, X' - free or Xo. They can be

conveniently added at fa or 1.15 (log scale). There is also shown, in Fig.

-40.001 6e, how the hyperbolic bias curve Xo (free)

distorts when a log frequency scale is

-i1. L used (as in Fig. 6h)." IREACTANCE XINI

2 ,Note that the log-scale B-curve

. / (Fig. 6a) and the log-scale X-curve (Fig.
-28o.00 6e) show great symmetry; i.e., they are

-360.00,. identical after two reflections. This

T. / i, double-reflection symmetry is also ex-
o -44000 -  I , / , hibited in a simple series-resonance

-52000 / curve, negative or positive. This is seen

I 00 in Fig. 4e.1, as contrasted with Fig.
- Ioooo , 4e.2. Figure 6d shows the basic circuit

.6 L. . . 1.2 _ which is the most useful starting point
4/1 .6 7 1.91.1 2

b //NORMALIZEDFREOUENCY for obtaining Fig. 6h.
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A curve "similar" to Fig 6h (now called Fig 61) is shown in Fig 2a, for

IZini. At first glance this looks like a simple "rectification" of the input

reactance curve X in. However, the reactance minimum and maximum values

"hover around" the fa ordinate. Their frequency separation is used in

determining Q. But the IZinI (which we have sometimes called IZ ini ) has

minimum and maximum values which start below fr and end above fa

Their frequency separa-

tion is used in determining k.

The contrast in the frequency-separation aspect is even more striking in

Figure 6n (and again in the susceptance curve Fig 6k). Moreover, when the Q

is very high as in Fig 6m or 6n, one can "rectify" the reactance curve and

obtain an approximation to the jZinj curve of Figure 2a. (Such "rectification"

is quite misleading however with a low-Q curve such as Figure 61; the apparent

resonance and antiresonance frequencies are all wrong!)

The group of susceptance curves Figs 6i, j, k; and the group of reactance

curves Figs 61, m, n are presented here mainly to accustom the readers eye

to the quite different appearances of "the same" curve when the computer

chooses different plotting scales.

Again, these high-Q susceptance curves, whose peak and dip "hover around"

the fr ordinate, must not be confused with the "similar" high-Q admittance

curve of Figure id. This is a log-log curve of input admittance magnitude

)Yinj. Its maximum value occurs at or below fr; and its minimum value

occurs at about fa" The frequency separation is used in determining k; it

tells us nothing about Q.

The susceptance curve of Fig 6i gives a reliable measurement of mechanical

Q for constant voltage drive. (Figure 6b, which uses no bias curve, would be

even more accurate.)
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E fr f Also f2 - fl
m f2 - f, Q E frQm

The reactance curve of Fig 61 gives us a reliable measurement of mechanical

t. Q for constant current drive. (Figure 6f, which uses no bias curve, would be even

more accurate.)

I fa 1 f4 f3

f4 - f Also f

Qm a

E I
For Qm > 10, % Qm

2 (fa - fr )

Note that (see Chap. 1) k2 a r This has an invariant frequency
fa

separation; whereas the -L separation varies from: much narrower ,to somewhat

broader than the k separation, depending on Rload'
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Chapter 7. The Admittance Components and the Admittance Circle; the
Impedance Components and the Impedance Circle.
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Chapter 7. The Admittance Components and the Admittance Circle; The
Impedance Components and the Impedance Circle.

It can be shown analytically that equation 4.1 for Ym plots as an

offset circle in the complex plane. To repeat Eq. 4.1:
- Rm  -Xm

Ym _+X +j +x (7.1)
m m Rm m

Here Ym refers to the admittance of the mechanical components of Fig. 4a

after being transformed to the electrical side. Ym is called the

"motional admittance".

It can also be shown analytically that equation 5.3 for Zm plots as an

offset circle in the complex plane. Indeed it must, since its circuit is

approximately the dual of the Ym circuit. To repeat Eq. 5.3:

Rm * (Xc)2 -Xm  (L /C)Zm= ' ' + j  I 1 (7.2)
R12 + Xm2 Rm 2 + Xm

2

Here Zm refers to the impedance of the mechanical components of Fig. 5a after

being transformed to the electrical side. Zm is called the "motional

impedance".

When the bias curves or sloping baselines Bo or Xo are suitably added in

(series) or in 11 (parallel) with these motional circles, the sum gives

the offset "circles" shown in Figure 7.1. The input admittance "circle" and

the input impedance "circle", as vehicles for a concise presentation of both

the input immittance and motional immittance data, have been extensively

covered by Kennelly, Dye, Cady, Woollett, and others; as well as by the IEEE

Standard 177 (1966).
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Now, Figure 7.1 shows not only the admittance circle but also its

conductance and susceptance components, shown earlier in Chapters 4 and 6.

The figure also shows not only the impedance circle but its resistance and

reactance components, shown earlier in Chapters 5 and 6. Two different

Q-values are illustrated. Both are too low to let the piezoelectric

immittance "go inductive," which happens when the Q is sufficiently high.

That is, B would go negative, X would go positive; and each circle would

cross the horizontal axis.

Some of the things to note in Figure 7.1 are the following:

1. The resistance curve and the conductance curve are offset in

( frequency from each other (by 15% in this case, since k= 0.50). Likewise

the reactance curve and the susceptance curve are offset in frequency by the

same amount.

It is easy to spot fr and fa from the conductance or resistance

curve, even when the Q is less than 5; but in general it is not easy to do

this from the susceptance or reactance curve. The eye has been assisted in

Figure 7.1 in two ways. First, two curves of different Q-values have been

computer-plotted, and these intersect at fr (or f a). Second, the bias

curve has been manually plotted and superposed, and this crosses the

intersection point itself at fr (or fa).

In the real world, only one susceptance or reactance curve is usually

provided, and so these "crutches" are not available. Note that the bias

curve B or B-clamped is the high-frequency asymptote for the B curve;

whereas the bias curve X or X -free is the low-frequency asymptote for the

X curve.

.2
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2. Inverting the input susceptance curve does not quite produce the

input reactance curve. IThis can be demonstrated numerically by inverting

the susceptance curve Bin of Figure 7.1, and comparing this with the

reactance curve Xin. The inverted curve will then be seen to be displaced

slightly to the left. It crosses the X -free bias line very close to
I

fr; whereas the reactance curve Xin crosses this bias line at fa" This

result is anticipated also by Figures 3e and 3f, and by Figure 4jj However

when we properly combine the susceptance with the conductance, and the

reactance with the resistance, then the resultant complex admittance Yin

does indeed invert into the resultant complex impedance Z in. This is seen

in the two circle diagrams, where the circles have been juxtaposed so as to

share a common zero. It is also seen in Chapter 1, Figures ld and le.

The max Y occurs at fm' with a value (for the large circle) of about

0.51 x 10- mhos, since each component is about 0.36 x 10- mhos. The

phase angle is about +460. This inverts to give a Z with a value 1960

ohms and a pnase angle of -460. This Z however is not the max Z; which

occurs at fn on the impedance circle. Rather it is the min Z, which

occurs at fm on the impedance circle.

The max Z (at fn) has a value of about 6800 ohms, since each

component is about 480 x 101 ohms. The phase angle again is -460. This

Z inverts into min Y (at fn) with a value of about 0.147 x io- mhos and

a phase angle again of +460. Similar relations hold for the two small

circles. It is interesting that Ymax and Ymin have approximately the

same phase angle; likewise Zmax and Zmin*
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When we turn to Figure 7.2, we see a slightly different arrangement of

the same six graphs. The usefulness of this type of presentation is to

allow the reader to read off directly the frequencies fr or fa with the

help of guiding lines extending from the peak values of the G and R curves.

Additional guiding lines extending from B peak and B dip, allow the reader

E I
to read off directly the frequencies f, and f2 for Q ; and f3 and f4 for

(see Chapter 6).

Note that extending the fr diameter-line onto the B curve gives us,

graphically, a point on the curve of 80 or B-clamped (at the intersection

with the B curves). Likewise, extending the f a diameter-line onto the X#

curve gives us, graphically, a point on the curve of X or X -free (at the

intersection with the X curves).

E fr nQ~=f a ndhth

It can be shown that E r and I a and that the

larger the circle the larger the Q, for both impedance and admittance. Now

a large admittance circle (high Q) calls for a large Gin-max; and this is

reasonable because Gin-max = l/Rm (see Eq. 4.2).

But a large impedance circle (high Q) calls for a large Rin-max; and

this feels wrong. However, Rin-max or Rs-max (see Eq. 5.3) is actually equal

2(X) (X) 2  (7.3)

to RI ich is . (See Appendix 7-A.) And so we have an inverse re-

lationship between R in-max and R m . In fact the Q-behavior of a transducer

vs a variable Rin-max (a series resistance) is very similar to the Q-behavior
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of a "tank circuit" (parallel resonance circuit) vs. a variable parallel re-

sistance Rp. This is hinted at in Figure 2g. In each case, the higher the

Q, the higher the Rp. and the higher the Rin-max (which is also R s-max).

When the Q is high enough so that the circles cut through the horizontal

axis (abscissa), at two frequencies, these frequencies need names. We will

call them fr (close to fr ) and fa (close to f a). They are shown in Figure

7.3. The IEEE Standard 177 uses a different nomenclature for these 4

frequencies. However the IEEE piezoelectric vibrator is measured on a bench

in air and has a high Q (greater than 40). Our vibrator is generally an

underwater transducer, measured in water; and it has a low Q (less than 5).

Hence the situation (of axis-crossing) doesn't arise in our everyday work.

Nevertheless, to help the reader follow the more general literature, we

have presented Figure 7.3, as discussed above. The impedance circles

correlate nicely with the input reactance curves. However, the susceptance

curves corresponding to the admittance circles were not available. Hence a

single susceptance curve is shown instead; and it bears a close

correspondence to the smaller admittance circle, even though the scales are
I S

different. And to repeat, fr and fa do not ordinarily show up in underwater

transducer measurements. The symbol f will be discussed in a later Figure.

Note that as the Q gets higher, each offset circle swings around in

such a way that fm or fn tends to line up with the abscissa (the axis of
S S

resistance or conductance). Concurrently, fr and fm close in on fr; and fa

and fn close in on fa. All this is often desirable, since a resistive

Z or Y can be driven by a smaller and more efficient amplifier than is

required for a reactive Z or Y.

*See Appendix 7-B 75
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Can fm or fn of the offset circle be swung down to the axis of

resistance when we have a low-Q transducer? Yes. This is one of the

bonuses that electrical tuning accomplishes, via either a series inductor or

a parallel inductor. However, this will not be discussed here, since we

have limited ourselves here to an analysis of the untuned transducer.

We have shown in Figure 7.2 how a phasor of the admittance circle can

be resolved, using a rectangular coordinate system, into two orthogonal

components. Thus, Yin = Gin + Bin*

Likewise a phasor of the impedance circle can be resolved into two
a a

orthogonal components. Thus, Zin = Rin + j Xin*

But we can equally well use a polar coordinate system and resolve any
phasor at frequency f as: Yp = I eJ 3

So Zp = Zp I"- eJp•

SoZ~ p *e (p).

In words, IZ I at frequency fp equals T-T ; and the phase angles are
p p

mirror images. Thus Ymax and its inverse Zmin occur at +em and -Om

respectively. Ymin and its inverse Zmax occur at +On and -On

respectively. And the magnitudes are inverses.

All this can be seen in Figure 7.4. The magnitude curves and phase

curves actually pertain to six circles not shown here. If IZ -T1

p

then log 1Zp= -log IYp1. This is clearly shown in the logarithmic

plots.
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The curve for phase angle 0 of Z is clearly the negative of the curve

for phase angle of Y. And it can be seen that a crosses the 00 axis at

both fr and fa' approximately, when Q is very high; but does not cross

when Q is'low (as with an underwater application).

Moreover when Q is very high, the crossover region, between fr and

f fa' means that the admittance "has gone inductive"; therefore y remains

at approximately -90 in this region and then returns to +90

Likewise the crossover region between fr and f a means that the

impedance "has gone inductive"; therefore 0 z remains at approximately

+900 in this region, and then returns to -900. With lower values of Q

this performance is aimed at but not attained.

We now reiterate some of the pros and cons of the complex-plane

representation vs. the real-plane representation. The real-plane plot (of

phase, for example) has the great advantage that the frequency scale is

uniform, whether a log scale or linear scale is under discussion. A uniform

scale allows easy interpolation of frequencies, with fairly good accuracy.

The complex-plane plot, on the other hand, has' a highly non-uniform

frequency scale, which does not allow easy interpolation of frequencies.

Thus from about +450 to about -450 (moving clockwise on each circle),

almost a full half-circle is used up to display the very narrow Af which is

required in the Q-determination around either fr (using f, and f2) or

fa (using f. and f4 ). The peak phase-curve frequency f is crowded next to

fa (Y-circle) or to fr (Z-circle) in the circle plots; but this frequency f

occurs at the center of the phase band in the real-plane plots, where it is

not at all crowded. One result of all this is that, for example in the

7-7
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design of amplifiers for driving an untuned transducer, the real-plane

presentation of the phase curve is usually more useful than the circle

presentation. Other examples could be given.

On the other hand, the circle presentation is an easy-to-store one-plot

collection of all the input immittance data. Moreover, if one requires only

Zn = lZ nl • eJ n or Ym = lyml " e j m, the one circle plot is just as informa-

tive as the corresponding two real-plane plots.

A few more points deserve a brief commentary.

1. Size of the circle. In Chapter 2 it was shown in Figure 2k (now

called Figure 7.5a) that when k = 10%, that even though Q was on the order

of 100, the input impedance curve showed only a tiny dip and a tiny peak.

The relation we used was: Qm @f Or equally well,
mn1~in1  fr -. Oeqalwll

lJ @ f __ 2

0 max @fr . 1 Tnamax (7.4)

Qmn R kn kQ --

T m Yminl @a V .m Phe Tm =7 .

When these admittance or impedance curves of Figure 2k are translated

to the complex plane, as in Figure 7.2, the same kind of thing shows up.

That is, the circle becomes merely a tiny loop, or even a cusp, on an

otherwise smooth curve B which is B-clamped, or X' which is X -free. Note

that the circle becomes tiny if either k2 or Q is very small. Figure 7.5b

shows the "circular loops" that often occur with a real untuned transducer,

measured in water. The degeneration of circles into cusps at the higher

frequencies is mainly due to the low coupling coefficient at the higher

resonance modes of the transducer.

7
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2. Determination of k. If in the complex plane, referring to any of

the circles discussed, we subtract the bias contribution 8 which is

4 B-clampedor Xo which is X -free (Figure 7.2),

we can show that:

k2  E D G in-max

TkF Qm T , where B o is evaluated at fr [This follows at

E 1/WCm
once fftm Figure 2c where Qm R . But from Eqs. 1.4 and 4.2, this is

___.____l_ G.n-max E = -max Dy
merely, wCok/-k-max  i QE Then k/l-k2  E = "  (7.5)

-"1/G -max 8 (k'/1-k-) Q; (k1 )Q; 8 B ] (75
in- o

EThen after Q; has been determined from f2 and f, and fr, we can calculate k.

:In like manner we can show that:

Dz R max [T

Qm =X Xo where Xo is evaluated at fa" his follows at (7.6)

once from Figure 2g where But from Chapter 5 and Figure 2e and
onc frm Fgue 2 whre I 1/WCm

I a

in-max R in-max_ _ I

Eq. 1.4, this is merely 1 X 2(k/l-k2 ) Qm (7.7)

wCo (1-kk
2 ) 0

7-9



CONDUCTANCE 4imho.)

£ juar

-e .

- ------- Ir
kz 10%

lI~dB

.5 .9 1 20 4
W-iIE FRE IEN-

FIG7.



kc2 R. -nmax Dz *.]
Then R in - X D z Then after Q1 has been determined (7.8)

0 0

from f, and f. and fa' we can calculate k.

3. Tan 6. In the real world of Figure 7.5b, the simple equivalent

circuit of Figure 2c is modified to have at least one more factor: a

dielectric loss Gel shunted across C., the blocked electrical

capacitance. The ratio Gel/WCo or Gel/Bclamped is called tan 6, the

loss-tangent. It is a dissipation term and is like an inverse-Q.

If Gel were constant over the frequency band, a given admittance

circle would shift to the right by a constant amount. A better assumption

is that tan 6 is constant over the frequency band. This means that Gel

must increase linearly with frequency. In practice tan 6 is often taken to

be the measured ratio Gel/Bfree or Gel/wCfree at some low frequency

(at least two octaves below frd .

In the real world of Figure 7.5b we find that the total Gin, which is

the sum of Gel and Gmot , increases non-linearly with frequency. Far

below resonance, however, it should be possible to isolate Gel and hence

tan a.

a a I

*If we wish to use X -clamped instead of X -free or Xo, as is sometimes done:

Rearranging , k2  X I A 1 42m .Xo/(1-k')

00But Xo/(1-k2) is X -clamped. (This was touched on in Chap. 3.) (7.9)

I R1ln'max ___z__

Hence k2* Qm R a _ , (7.10)X -clamped X -clamped
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Conclusion

We have shown that the components of the admittance and the impedance

are similar in appearance, but are not really duals. Hence they do not

quite invert from one to the other. When the real and imaginary components

are geometrically added to produce Y or Z however, the vector Y is indeed

the inverse of the vector Z.

We have also shown how the size of the circle is controlled by Qm and

k2; and how the circle can even "go inductive" when k2Qm is sufficiently

high.

We have allowed the reader to compare alternative presentations tc the

"circle components" (all of which have their merits).

And we have shown that the real world has an additional complication in

the form of tan 6. That is, the equivalent circuit is modified to include a

shunt resistance in parallel with Co.

7 -11
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Appendix 7-A

Alternative Derivation of R~nmx x/z2 ( 1 )

We can rewrite Eq. 7.3 as R~n- max o m . 7A.I1inRm R m

where C' is that motional capacitance shown in Figure 3c. In this specific

case it has a value of 6 nF. Then if k = 50%, k2 = 1/4 and

(Co-k2 ) in Eq. 7A.1 equals 6 x 1/4 which equals 1.5 nF.

If now we look at Figure 3a (which is merely another form of Figure 3c)

we see that C also equals 1.5 nF, where C0 is the clamped electrical

capacitance. And in fact we can generalize:.... (**)

(Co k2) = CO and X' /k2 = Xo. (7A.2)
mc

Henc R!•ma (7A.3)

i (This is a common formulation of R! -max.)in

(**) The ratio of the clamped electrical capacitance of the admittance

circuit, to the motional capacitance of the impedance circuit is thus

C0 /C; k2 (or 1.5/6 - 1/4). (7A.4)

But the ratio of the free electrical capacitance of the impedance

circuit, to the motional capacitance of the admittance circuit is the

inverse: Co'/C m = 1/k2 (or 2/0.5 = 4/1.) (7A.5)

Other relationships can be explored. Thus, multiplying:

C0/C; x C /Cm = k2 - 1/k2 = 1.

Rearranging, Co/Cm x C/C; = 1.

Then Co/Cm = CV/C; (note the inversed relation). (7A.)

1.5 6 1-k2

0.5 2 k2

7A -1



Appendix 7-B

Extract from IEEE Standard on the Piezoelectric Vibrator;

and Comments thereon.

This appendix contains an extract from the 1966 Standard, IEEE Standard

177-1966, on the Piezoelectric Vibrator.

$The Standard's Figures 2 and 3 summarize some of the results derived in

this Handbook. Their ]ZI curve is shown more fully in our Chapter 2, Fig 2a;

and discussed in Chapter 5. The three critical frequencies fn' fp, and fa are

shown in our Chapter 7, Fig 7.4 and touched upon in Fig 7.1; and also in Figs.

5f and 5j.

The linear curve X1, occurring above frequency fs, is first shown in ourVs
Fig 4e.2. In addition the IYI, B, and G curves corresponding to the IZI, X,

and R curves are shown and discussed in our Chapter 4, and also in our Figures

7.4 and 7.1.

In fact, our Handbook has analyzed the main features presented by the

Standard; and a great deal more.

DEMINITIONSI AND M.TiODS OF 31EASUiEIML"T

FIO PIEZOELE(iMUC VIBIIATOiS

INTRODUCTION: rived from them. At a given frequency the pa-
'This Standard isa revision of the IRE Stand. rameters of the equivalent electric circuit gen-

ard on Piemelectric Crysta he iezoeletrc erally approach constant values as the amplitude
of vibration approaches gero. The amplitudeVibrator: Definitions and Methods of Measure- which can be tolerated before the parameters

meat. 1957 (57 IRE 14. 81) 1snd a continua-tion of Standards in this field . &.t ae ppreciably affected varies widely betwen

•tduvybrators of various types aa ean oyy be do-An introdluctory, review Of the equivalent ele. retrained by ezperlm"L
tric circuit of a piesoelectric vibrator and its
parameters is followed by a discussion of the de-
termination of these parameters by the trmasmis.
siac method This method was published in

1951 ad Iecame the bsi for the 1957 IRE C,
S:rArd Sim that time, a thorough investi-
gation of the transmission method has resulted in
more precise expressions which permit a more Co
accurate evaluation of the parometerOs This U
method is suitable for frequencies up to about
30 Mff le the commonly encountered ranges U.
of the capacitance r r and "h igure of merit
M, povWd t wro due to instrumentation
am taken into aOmt. The equoM Presented
in "li Stadard hawe been rmuad to coren I'3
thsorro. i Weaw. calk of a isessluwe va"M

4ist a bnw7-s.
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and do not represent a particular piezoelectric practical purposes, the following assumptionsvibrator.' can be made: 1. ;z. 1,-= It and/ -1A _:. - i,
For further clari1katim the impedance and More exact relations between the characteris-

admittance circles of a piezoelectric vibrator tic frequencies , 4, 1.. , 1. and the series
are reproduced in Figure 3. However, the cir- resonance frequency I. of a vibrator, valid forcle representation of the impedance or admit- the figure of merit M > 10 and the capacitance
the circle diameter of the admittance diagram is tionships have been derived by various au-

large compared with the change of 24IC. in the thors' 9 under the assumption that M • 1.
resonance range or if r 4 Q2, which is fulfilled The separation between parallel ad seriesin most vibrators. If the latter conditions are resonance frequencies ii given by:
not fulfilled, the admittance curve shows a cis-
soidal character. Throughout the remainder of (2) - - 9i C 1 (this Standard, it is assumed that the impedance -- C. - (
or dmittance) of the vibrator can be repre- The approximation

sented by a circle diagram. Table 3 gives data
for Q, r, and Q2 /r for various types of vibrators. -I.
indicating that this assumption is valid for all . - 1+--
practical caaesi 1 1

It is necessary to make approximations in de- 24 2r
riving practical equations for general use. It is
the error of these approximations in addition = C,
to the errors of insumnentatioi. that govern the 2- C.- (3)
overall accuracy of the experimenally derived can be used for larger values of r (for example.pwa meters. when r is greater than 25 the error is les titn mAs a Am apprazmitia sufficient for many I percent.)

K.' I

I mI

/I

O go g a fp {

FREQUENCY
llm 2

Impedane IS!. Resistane Re. Reactrc X. mad Series
Arn Reactance X, of a Pimeoelectric Vibrator a a Func.

410 tio of Freque iy. Z,, and Zn dims. minimum and
unaimuim impedance. R, and Re the imlpmc at meoPIae anile. For the manins of dif~ requamsaa ,

ase Table 1A ad Figure L.
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-2. TRANSMISSION CIRCUIT METHOD sion (maximum transfer impedance) of a 'it-

OF MEASURING THE PARAMETERS network containing the equivalent electric circuit
OF THE EQUIVALENT ELSCTRIC of the vibrator under test in the series branch,
CIRCUIT as shown by Figure 4. The frequency IOT at

maximum transmission (maximum output volt.
2.1 Magerment, mnea alto) it measured both with and without the ca.
This method is baed on measuring the fre. pacitanc C in eries with the vibrator. From

que"ac and impqsadce at maximum transmis. these -sr10 the mOtiO reDsmonance 1-
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